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We examine the gas of topological excitations in the lattice non-linear 0(2) 3 model. 
We argue that the phase transition between broken and unbroken symmetries can be 
identified with that of three-dimensional scalar electrodynamics, strongly suggesting that 
the transition is first order. 

1. Introduction 

In a recent paper by Banks, Kogut and Myerson [1], the problem is posed of  cal- 
culating the critical exponents of  the three-dimensional 0 (2)  Heisenberg model by 
studying a gas of  its topological excitations. These topological excitations are vortex 
loops, the three-dimensional analogue of  the Kosterlitz and Thouless vortices [2]. 
This paper is a report  on our at tempts to do this. We have failed because the phase 
transition appears to be first order and therefore not dominated by a critical point. 

To be more precise, we investigated an 0(2)3 Villain model, generalised in the 
same spirit as Jose et al. [3]. We find that this model is dual to a three-dimensional 
model of  scalar electrodynamics (or the Landau-Ginzberg model  of  superconduc- 
tivity),  which is known to have a first-order phase transition between the normal 
and Higgs-Kibble (superconducting) phases [4]. This duality is interesting because 
it is a topological excitat ion to particle duality of  the type proposed by Olive [5] * 
The physical reason for the first-order phase transition is not hard to find, being 
analogous to the cooperative interaction between dislocations in solids that makes 
melting a first-order transition [6] (a better known example than superconductivity!)  
In fact this model is probably a reasonable one for some types of  dislocation melting. 

The 0(2)3 Heisenberg model is an extremum of  the family of generalised 0(2)3 
models and the duality transformation in the Villain model is singular. However, a 
continuum version of the duality map [7] seems to suggest that scalar QED is the 
right model to discuss, so we are unsure about the nature of the transition in this 
c a s e .  

The layout  of  the paper is as follows. In sect. 2 we will investigate the Villain 

* Also the sine-Gordon-Thirring equivalence. 
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models and in particular illustrate the duality mapping. In sect. 3 we introduce a 
"cont inuum" formalism for vortexqoop gases. In sect. 4 we will argue that the 
transition is first order and discuss the physical reason for this. In the latter section 
we will give a general discussion of  why these 0(2)3 models are not in the obvious 
universality class of  the n vector model. 

2. Exact duality maps 

All the models discussed here are of the Villain type [8] which have the nice 
property that the partition function factorises into a spin-wave and a topological- 
excitation part 

Z = / s p i n  wave Z topo log ica l  • (2.1) 

There is quite extensive literature developing these models [1,3,9] and the reader is 
referred to these papers for further details and examples. 

The Villain 0(2)3 model is defined by 

+~r dFOi 1 ~ exp [ -½13~ {(AuO(i) + 2nnu) 2 + iJ(i) 0(i)} l , (2.2) f Z[J] 
a L2nJ (nu} 
- - W  

where 

A ~ , O ( i )  = O( i  + # )  - O( i )  . 

The variables n u are defined on the directed links between adjacent sites and the 
J ' s  are integer valued external sources. The spin correlation function may be easily 
shown to be 

<cos(0(R) - 0(0))> = Z[J]/Z[OI , (2.3) 

with 

J= ~(x - R) -  6(x). 

Using the Poisson resummation formula, we may easily rewrite (2.2) as 

z :  f Lz-CJ12=~] u/= ,nu} ~ ~{n~+iAuO(i)+iJ(i)O(i). , 
_~. l,/g 

(2.4) 
where N is the number of lattice sites. Doing the 0 integration gives: 

Z[J] = (21r/3) -N/2 {nu}~ 6Aunu, j exp( ~ ,  n2/2~). (2.5) 

Tile factor (271"t3) -N/2 is tire spin-wave part in the absence of sources. The condition 
that Aun u = J implies that the partition function is a sum over threads o f  action 
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1/23 per unit length which either form closed loops or terminate on the sources J. 
We will later interpret these threads as the Nielson-Oleson [10] (or Abrikosov) 
vortex lines of  scalar QED or the particle trajectories of  the field theory associated 
with the 0(2)3 model. With this interpretation it is clear that the J ' s  act as mono- 
pole sources for the vortex lines. 

We proceed exactly as in ref. [ 1 ] by introducing integer valued variables m**, SO**, 
living on the links of  the dual lattice, such that 

n** = c**uc~ A3,m~ + SOu" 

A**SO** = J .  (2.6) 

The m** are arbitrary up to the addition of  lattice gradients, so one has to choose 
a gauge or divide out by the group volume of IR. We will see later that the choice of  
SO** is also arbitrary but for the moment visualise them as flux lines joining up the 
monopole-an timonopole pairs. 

We replace the sum over rn** by integration over a continuum vector field A** by 
further use of  the Poisson formula to obtain 

Z = ( 2 r r 3 ) - N / 2 a - l f d [ A * * ]  ~ 6a**i,,o 
{l**) 

X e x p ~  { - (A A A + SO)2/2fi + 2rriluA** } . (2.7) 
i 

1.* also lies on the links of the dual lattice, ~ is the group volume and the constraint 
on A**I** arises because the volume factor suppresses terms with A**I** 4= 0 (this con- 
straint, i.e. current conservation for the sources of  A**, would also follow from any 
choice of gauge; clearly assuming it makes any choice of gauge irrelevant). 

If we make some different choice of s0** satisfying A**SO** = J, then the difference 

SO(u l) - SO(u 2) = A A A' ,  A '  C Z ,  (2.8) 

t 
and replacing A** by A** + A** would leave the partition function invariant because 

e 2*riA~ = 1 . (2.9) 

This is a statement of  the Dirac condition relating the magnitude of the monopole 
charge, J, and the magnitude of  the current loops. 

One can easily see that adding a flux tube (Dirac string) to the field A A A is tire 
correct way to insert monopole sources into a field theory described by divergence- 
less fields. If  one considers a monopole-antimonopole pair then expanding out the 
gauge action we find 

½(A A a + SO)2 = ½(A A A) 2 + 1~2 + (A A A) ° 

= ½(a A .4) 2 + ~ C  + ( a  A ~ ) -  .4 

= ½(A A A) 2 + ½SO2 +A • J ,  (2.10) 
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Fig. 1. The string field ~p s cancelled by the solenoidal field A te give the correct dipole field. 

where J is a solenoidal source creating an A field cancelling off the string and sub- 
stituting the correct dipole field (see fig. 1). 

Returning to eq. (2.7) we observe that the A u integration yields long range forces 
of  the Biot-Savart type between the loops described by l u. These loops are readily 
interpreted as the vortex threads of the original 0(2)3 model. 

The alert reader might object at this point because in order to obtain (2.7) we 
have integrated over all configurations in the 0(2)3 model. So how can we identify 
vortices each distribution of  which is a function of the initial configuration of  0(/)'s? 
In fact it is possible to proceed directly from (2.2) to (2.8) without summing over 
configurations or using the Poisson summation formula. For details of this see 
appendix D of  ref. [3]. To do this one identifies lu with En u around the plaquette 
dual to the link on which I u lies; lu is therefore just the local vortex density and 
being a lattice curl, the condition 7 • l = 0 is obvious. 

Rather than proceed directly with eq. (2.8) we will now show that a lattice 
model of  scalar QED yields an expression closely related to it. To this end consider 
the model, 

+TT + ~  

d[~(i)lL2. ] / d[xu] Z(% e) = . f  
- - T r  - ~  

X ~ e x p ' [  ½7(Au~ 2Trnu--exu) 2 ½(AAx)2]  . (2.11) 
(n.} 

This is a natural model for non-linear scalar QED with a n o n - c o m p a c t  gauge 
group (i.e., we do not identify rotations of 21r with the identity so that the group 
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1R rather than U(I)  or 0(2)).  Using the Poisson formula yields 

+ ~  

z ~  f d[xu] ~ ~a.n,o exp~ ~ - - n 2  + i e x u n ,  - ~ ( A A  X ) Q .  (2.12) 
_~ n, Li,~ 27 

This is the same as (2.8) as far as the topological excitations are concerned, pro- 
vided we set 1/7 to zero and 2rrx//3 = e. If 7 -1 4= 0 we have added a chemical poten- 
tial/unit length for the vortices. 7 -1 therefore plays a role analogous to the In y of  
ref. [3]. What has happened is that we have identified the vortices with the "particle" 
trajectories of the scalar QED. Since scalar QED also possesses topological excita- 
tions in the form of Nielson-Oleson vortices (provided that we are in a type I1 super- 
conducting regime, non-linear QED is an extreme type 1I superconductor),  we can 
continue from (2.12) in exact analogy with the progression (2.2)-(2.5) ,  exhibit 
these vortices and identify them with the particle content of the original 0(2)3 
model. 

In (2.12) we put n = A A M, M C  Z and use the Poisson formula again to replace 
the sum over M by an integration over qb u. 

+ ~  + ~  

Z = N f  d[x, , ]  f d [*u]  ~ e x p [ ~  (AAqP)2 
. . . .  {m,) 27 

, 2  1 -- i e ( A  A ch) " X - -  ~ ( A ~ x )  + 2rrimq~ . (2.13) 

Using Abels resummation formula (tile discrete equivalent of  integrating by parts), 
we transfer the lattice curl from qb to X in the second term of the exponent and 
rewrite 

+ ~  + ~  

z = x f  d[x] f d[,] E exp[ ~ - ( A  k @)2/2 7 

-- I ( A  A X + i e ~ )  2 - ½e 2q)2 + 2rrimq~] . 

We can now perform the X integration to yield 

(2.14) 

Z=Nfd[cb] ~6a.m, 0 
m# 

X exp[ ~ - (A A cb)2127 -- ½e2q) 2 + 2rcimch]. (2.15) 
i 

Tile constraint on m again arises from gauge invariance. The m therefore form 
closed loops interacting with a Biot-Savart like force but with range (e2T) -1 . The 
original loops [u were sources of  Xu (analogous to A**) and the new loops are sources 
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of q~u" (analogous to Hu). The Gaussian integral relates them as 

% = / ( v  ^ e 
These new m r loops are therefore Nielson-Oleson vortices. If we set 3'-1 = 0 and 
perform the q) integration we obtain 

Z(oo, e) = N ~  6A .m,o exp - " ~ -  
m 

which is identical to (2.5) provided 27rx//3 = e, the identification we have already 
made. Therefore, as we said earlier, the loops in (2.5) are the extreme short-range 
interaction limit of the Nielson-Oleson vortices. When 3 ,-1 4= 0 the model which is 
dual to the QED theory is (2.2) with the addition of a term in the exponent i.e., 

Z(3"e) c~ f d [ ~ ] n ~ u  expI-- ~ {½[J(AuOi+2rmu(i)2+ 

or 

l('),, e)~ f d  I2~1 ~ exp ~ [I~(A#0i + 27rn#(i) 2 -(plaqu~ettes/'/)2/2")'] .(2.18) n# i 

What we have shown is that a theory with gauge group ~ (i.e. 2.17) is dual to a 
theory with gauge group 1R, with the topological excitations of  one theory appear- 
ing as the particle trajectories in the other. We have been rather cavalier about 
throwing away the spin-wave contributions but in these theories they are clearly 
not relevant to any phase transitions. 

3. Continuum approximation to the duality map 

In this section we will set up a formalism for studying the statistical mechanics 
of  closed-loop configurations. This formalism is simply the connection between the 
particle and field content of  a quantum field theory. This duality is usually only 
exhibited by studying quantum field theory in the language of Hilbert spaces and 
representations of canonical commutation operators in terms of annihilation and 
creation operators. It is in the spirit of  the times, however, to demonstrate that 
anything Hilbert space can do then path integrals can (with care!) do also. 

Let P(t) be the total number of closed, non-oriented, paths of  total length t 
steps. We wish to compute: 

f dt e-A tp(t) " (3.1) 

We will use continuum notation because most of what we wish to study will take 
place on a length scale much greater than that of the lattice. 
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Introduce a quantity p(x,  x', t) as the probability that a random walk of t steps 
starting at x will arrive at x'. It is easy to see that p(x, x', t) satisfies the equation 

L 2 
Atp = - - A 2 p  (3.2) 

2D 

provided Ix - x ' i  <<  Lt. The solutions of this are well approximated by solutions 
of the continuum equation: 

L 2 
ap _ ~ V2p,  (3.2)a 
at 

and we will work with this equation from now on. 
The solution to (3.2) can be written as a Gaussian path integral [11]. 

x ' , t )  = N /  d )? dt (3.3) p(x, 
x t  

the normalization N being set so that f p  = 1. 
The total number of paths from x, to x' in t steps is: 

p(x,  x', t)(2D) t = P(x, x', t) 

= N / d [ x ]  exp[-/{2~T2 ) 2 - I n  2D} a t ] .  (3.4) 

Also 

P(X, X, t) e -A t  dt = f dt e-Atp( t )  2t , (3.5) 
0 

the factor 2 coming from the fact that a loop from x to x' is indistinguishable from 
a loop from x' to x and the factor t arises because x can be at t locations on the 
loop. 

Writing 

r(x, x', t) = ~ q,(x) ,t,(x') e-  ~o~ I~l, 
?/ 

{L2 } - ~ 7 2 - 1 n 2 D  qb n=oon2dpn, /{D 2 = 1 , (3.6) 

we see that 

1 
/ 2 t P ( t ) e  Atdt=~n oo2 n +A 
0 

L2 
- T r  -2-L} 72 + A 111 2D} - l 
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so finally, 

{ L2V2 } 
- - - + A - I n 2 D  . P(t) e At dt=_~_ lnde t  

2D 0 
(3.7) 

We have therefore managed to express the statistical sum over configurations of 
action A/unit step in terms of the well-known expression for a one-loop Feynman 
diagram. If we consider a non-interacting gas of such loops then we have to expo- 
nentiate the configuration sum for one loop: 

00 
Z= ~ { f P ( t ) e  - A t  dt}n/n!  

n 
0 

L2V2 } 
- - -  +A - l n 2 D  = de t -U2 2D 

A gas of  non-interacting loops with a certain energy or action per unit length can 
therefore be written as a free field theory with mass 2 = A - ln(2D). 

The representation of the quantity I" as a path integral enables one to introduce 
interactions between different elements of  the loop. Consider firstly the interaction 
between a loop and an external magnetic field: 

i / / G(x, x', t) = d(x) exp [ -  {13cz + V(x) + ieJcuAu} dt] . (3.9) 
x 0 

G satisfies the equation 

0G 
Ot - ~(0~1 + ieAu)2G - VG , (3.10) 

enabling one to go through the previous analysis but with V replaced by the covariant 
derivative. We can write the equation for a gas of  loops interacting through Biot- 
Savart like forces (eq. (2.8)) between elements dx I dx 2 

Vin t = dx~ Guv(x lx2)  dx~ , (3.11) 

in the form 

1 /2v Z =  N.fd[tp] d[~*] d[Au] exp[-fd°x {V~VC +m2tp*~p - aFuvF }l .(3.12) 

The pair of complex fields is needed because now the orientation of loops is impor- 
tant and the factor ½ in eq. (3.7) must vanish. We have exhibited once again, there- 
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fore, the connection between our generalized 0(2)3 model and scalar QED., this 
time in a way that seems valid in the limit 7 -+ oo. i f m  2 < 0, i.e., the free energy per 
unit length is negative, then the vacumn will be filled with a spaghetti of  tangled 
loops and the equivalent field theory will be in the Higgs-Kibble or superconducting 
phase. In order to stop the density being infinite we need a )t~ 4 (with positive X) to 
produce a short-distance repulsion in eq. (3.12). Such a term would always be gen- 
erated in any renormalisation scheme for (3.12). In fact it should be necessary to 
introduce a bare X~4 term in order to 'stiffen' the random walks on the lattice 
because eq. (3.2) allows paths which do not exist in the partition function we are 
considering. These paths are the backtracking or overlapping paths where the total 
charge along parts of  them are zero. In the original partition function these have 
weight corresponding to l u = 0 whereas in the path integral the weight is greater 
because of the possibility of  backtracking. The X¢4 repels the paths and so reduces 
this effect. 

It is worth explaining what the order parameter (~0) means in (3.12). Clearly if 
m 2 > 0 we expect (¢) = 0 but (~02) 4= 0, while for m 2 < 0 we expect to have broken 
U(1) symmetry with (~p)4= 0. 

If we write a modified (3.8) with a scalar external interaction for the threads we 
find: 

z :  E L   fdExl exp i-f(l  2 + 
n n! 

: NfdDl exp [-f{~o( - 1 g  2) ~0 + 1 V(x~2  ) dOxl . 
Differentiating this functionally with respect to V yields: 

Z1 66Zv(x) _ 12Z 2fIdx,l ... [dx.l l ... 

+ f d t n ~ ( X -  Xn)] [exp @ ½ . ~ 2  + 1V(x)}dt]n 

: ½<p(x)>: <{£ (x)>, 

where p is the local density of  threads. 
Similar thought about (¢) indicates that it is that proportion of the threads which 

is infinite in length. Fortunately the correlation inequality 

( ~ 2 ) >  (so) (so) 

shows that this fraction is less than the total number of  threads! 

4. Renormalization group and discussion 

Having decided which field theory describes the problem in hand the logical thing 
to do is investigate the behaviour as renonnalised m 2 goes through zero by applying the 
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| 

Fig. 2. The flow with changing scale in the coupling constant plane, showing the instability in 
the e direction at the critical point. 

renormalization group in 4 - e dimensions. The one-loop/3 (e, k) function is easily 
calculated in the e expansion and is 

/3 x = - e X +  [10X 2 + 36e 4 - 24e2X]/16~ 2 , 

1~ e = - e e  + [2e3/31/16rr 2 , (4.1) 

This has a fixed point at X* = 8n2, e* = 0 which is the usual 4 - e fixed point. If  this 
dominated the phase transition then we would get the usual exponents (to all orders) 
that one would get from the 0(2)  model. Together with the usual symmetry of  
exponents (where defined) above and below the critical point we would have found 
consistency in our duality transformation. Unfortunately the fixed point is unstable 
in the e direction and there are no other fixed points nearby (fig. 2). Halperin, 
Lubensky and Ma [4] have argued that the phase transition is in fact first order. 

We have to understand why this is so and not necessarily inconsistent with our 
usual understanding of  phase transitions in O(N) symmetric systems. 

First-order phase transitions are usually co-operative phenomena and the nature 
of the co-operation is not hard to find. Naively the phase transition occurs when the 
free energy/unit length of our thread goes negative. The energy part of the free 
energy is just the energy locked up in the magnetic field of a long wire. In three 
dimensions this is logarithmically infrared divergent and certainly depends on the 
density of  other currents. In general, neighbouring currents will be oppositely 
oriented thereby reducing the free energy of the system. The dependence of  the 
thread concentration will be non-linear causing the effective potential to have the 
form of fig. 3. This mechanism is identical to that which happens to the free energy 
of dislocations in a solid near its melting point (see ref. [6]) although the interac- 
tions between dislocations wouldneed mixtures of  higher-spin fields to describe 
their behaviour correctly. It is well-known that melting of  solids is a first-order phase 
transition. 

Is it possible for the non-linear 0(2)3 model to have a first-order transition? For 
the generalized model of  sect. 2 the forces between the Nielsen-Olesen vortices 
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Fig. 3. The total free energy of  the threads as a funct ion of  concentrat ion.  
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behave in a similar manner below the transition point  so the theory seems self con- 
sistent. One would however have expected the 0(2)3 model to be in the same uni- 
versality class as the linear 0(2)3 model and therefore have a second order phase 
transition described by well known critical exponents in (4 - e). Certainly the 
O(N)3 non-linear models seem to be for N~> 3. One can carry out expansions in 
2 + e for these non-linear models [12] and find the same qualitative agreement. For  
N = 2, the 2 + e expansions do not work because the naive continuum model is 
simply a free theory and always seems to be in the ordered phase with non-vanish- 
ing value for the magnetisation. The phase transition must be dominated by the 
topological excitations therefore as is the 0(2)2 model. This is possibly the escape 
from paradox.  The linear 0(2)3 model behaves, in the 4 - e expansion, no differ- 
ently from the other O(N) models and its phase transition is therefore dominated 
by "spin wave" type fluctuations as are all the other cases. This opt ion is not  avail- 
able to the non-linear case. There are presumably topological excitations in the 
linear model in the continuum limit but they do not seem to play any significant 
role. 

After submitting this paper we received a preprint by Peskin [13] discussing the 
same topic. Our duality map (sect. 2) is identical with his, while our sect. 3 contains 
matter  not discussed by him. Peskin assumes that the phase transition is second order 
in the case 3' = 0. I f  this is true (and there is evidence from high-temperature series 
[14]) then 3' has to be a relevant parameter in the sense of the renormalization group. 

We wish to thank David Wallace, Michael Gunn and Mike Kosterlitz for useful 
conversations. We gratefully acknowledge the financial support of  the Science 
Research Council. 
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